A Fast 3D Multigrid Based Space–Charge Routine in the GPT Code
نویسنده
چکیده
Fast calculation of 3D non–linear space–charge fields is essential for the simulation of high–brightness charged particle beams. We report on our development of a new 3D space–charge routine in the General Particle Tracer (GPT) code. It scales linearly with the number of particles in terms of CPU time, allowing over a million particles to be tracked on a normal PC. The model is based on a non–equidistant multigrid Poisson solver that is used to solve the electrostatic fields in the rest frame of the bunch. Bunch lengthening and emittance growth calculations in a low–energy short electron bunch are chosen as an example of non–linear space–charge effects in a high–brightness photo–injector.
منابع مشابه
Calculation of Coherent Synchrotron Radiation in General Particle Tracer
General Particle Tracer (GPT) is a particle tracking code, which includes 3D space charge effect based on a nonequidistant multigrid Poisson solver or a point-to-point method. It is used to investigate beam dynamics in ERL and FEL injectors. We have developed a new routine to simulate coherent synchrotron radiation (CSR) in GPT based on the formalism of Sagan [1]. The routine can calculate 1D-w...
متن کاملProgress in 3d Space-charge Calculations in the Gpt Code
The mesh-based 3D space-charge routine in the GPT (General Particle Tracer, Pulsar Physics) code scales linearly with the number of particles in terms of CPU time and allows a million particles to be tracked on a normal PC. The crucial ingredient of the routine is a non-equidistant multigrid Poisson solver to calculate the electrostatic potential in the rest frame of the bunch. The solver has b...
متن کاملEfficient 3d Space Charge Calculations with Adaptive Discretization Based on Multigrid∗
Precise and fast 3D space-charge calculations for bunches of charged particles are still of growing importance in recent accelerator designs. A widespread approach is the particle-mesh method computing the potential of a bunch in the rest frame by means of Poisson’s equation. An adaptive discretization following the particle density distribution is implemented in the GPT tracking code together ...
متن کاملTESLA Report 2003-04 3D Space-charge model for GPT simulations of high-brightness electron bunches
Abstract. For the simulation of high-brightness electron bunches, a new 3D space-charge model is being implemented in the General Particle Tracer (GPT) code. It is based on a non-equidistant multigrid solver, allowing smooth transitions from a high to a low-aspect ratio bunch during a single run. The algorithm scales linearly in CPU time with the number of particles and the insensitivity to asp...
متن کاملRecent Developments for Efficient 3d Space Charge Computations Based on Adaptive Multigrid Discretizations∗
Efficient and accurate space-charge computations are essential for the design of high-brightness charged particle sources. Recently a new adaptive meshing strategy based on multigrid was implemented in GPT and the capabilities were demonstrated. This new meshing scheme uses the solution of an intermediate step in the multigrid algorithm itself to define optimal mesh line positions. In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002